Posts

Molecular Thoughts

Abstract: Life, Knowledge and Natural Selection― How Life (Scientifically) Designs its Future – Bill Hall

Bill HallStudies of the nature of life, evolutionary epistemology, anthropology and history of technology leads me reluctantly to the conclusion that Moore’s Law is taking us towards some kind of post-human singularity. The presentation explores fundamental aspects of life and knowledge, based on a fusion of Karl Popper’s (1972) evolutionary epistemology and Maturana and Varela’s (1980) autopoietic theory of life to show that knowledge and life must co-evolve, and that this co-evolution leads to exponential growth of knowledge and capabilities to control a planet (and the Universe???). The initial pace, based on changes to genetic heredity, is geologically slow. The addition of the capacity of living cognition for cultural heredity, changes the pace of significant change from millions of years, to millennia. Externalization of cultural knowledge to writing and printing increases the pace to centuries and decades. Networking virtual cultural knowledge at light speed via the internet, increases the pace to years or even months. In my lifetime I have seen the first generation digital computers evolve into the Global Brain.

As long as the requisites for live are available, competition for limiting resources inevitably leads to increasing complexity. Through most of the history of life, a species/individuals’ knowledge was embodied in its dynamic structure (e.g., of the nervous system) and genetic heritage that controls the development and regulation of structure. Some vertebrates evolved sufficient neural complexity to support the development of culture and cultural heredity. A few lineages, such as corvids (crows and their relatives), and two largely arboreal primate lineages (African apes and South American capuchin monkeys) independently evolved cultures able to transmit the knowledge to make and use increasingly complex tools from one generation to the next. Hominins, a lineage of tool-using apes forced by climate change around 4-5 million years ago to learn how to survive by extractive foraging and hunting on grassy savannas developed increasingly complex and sophisticated tool-kits for hunting and gathering, such that by around 2.5 million years ago our ancestors replaced most species of what was originally a substantial ecological guild of large carnivores.

Tools extend the physical and cognitive capabilities of the tool-users. In an ecological sense, hominin groups are defined by their shared survival knowledge, and inevitably compete to control limiting resources. Competition among groups led to the slow development of increasingly better stone and organic tools, and a genetically-based cognitive capacity to make and use tools. Homo heidelbergensis, that split into African (H. sapiens), European (Neanderthals), and Asian (Denisovans) some 200,000 years ago evolved complex linguistic capabilities that greatly increased the bandwidth for transmitting cultural knowledge. Some 70,000 years ago H. sapiens (“humans”) exited Africa to spread throughout Eurasia and quickly replace all other surviving hominin lineages. By ~ 50,000 years ago humans were making complex tools like bows and arrows, which put a premium on the capacity to remember the rapidly increasing volume of survival knowledge. At some point before the end of the last Ice Age, mnemonic tools were developed (“method of loci”, “songlines”) to extend the capacity of living memory by at least one order of magnitude and some 10,000 years ago as agriculture became practical in the “Fertile Crescent” monumental theaters of the mind (such as Göbekli Tepe and Stonehenge) and specialized knowledge management guilds such as the Masons provided the cultural capacity to enable the Agricultural Revolution. 7-4,000 years ago technologies for writing and the use of books and libraries enabled storing and sharing of cultural knowledge in material form external, facilitating the emergence of empires and nation-states.
Around 550 years ago printing enabled the mass production of books and widespread dissemination of bodies of knowledge to fuel the Reformation, Scientific and Industrial revolutions. Around 60 years ago the invention of the digital computer increasingly externalized cognitive processes and controls over other kinds of tools. Databases, word processing and the internet developed over the last ~30 years enabled knowledge to be created in the virtual world and then shared globally at light speed. Personal technologies developed in the last 10 years (e.g., smartphones) are allowing the emergence of post-human cyborgs. Moore’s Law of exponential growth suggests the capacity for a few orders of magnitude more before we reach the outer limits of quantum computing.

What happens next is anyone’s guess.

Slides available here:

 

 

brain spark

Abstract: The Shaky Foundations of Science: An Overview of the Big Issues – James Fodor

James Fodor 2013Many people think about science in a fairly simplistic way: collect evidence, formulate a theory, test the theory. By this method, it is claimed, science can achieve objective, rational knowledge about the workings of reality. In this presentation I will question the validity of this understanding of science. I will consider some of the key controversies in philosophy of science, including the problem of induction, the theory-ladenness of observation, the nature of scientific explanation, theory choice, and scientific realism, giving an overview of some of the main questions and arguments from major thinkers like Popper, Quine, Kuhn, Hempel, and Feyerabend. I will argue that philosophy of science paints a much richer and messier picture of the relationship between science and truth than many people commonly imagine, and that a familiarity with the key issues in the philosophy of science is vital for a proper understanding of the power and limits of scientific thinking.

Slides to the presentation available here: